jill-dyche

Hi.

Writer, classic rock lover, dog rescuer, co-founder of Baseline Consulting, and now Vice President of SAS Best Practices--I speak, blog, and pester my friends about these topics. My current focus is getting IT and business organizations to collaborate more effectively and not kill each other. I also talk and write about big data, why analytics is fundamentally strategic, how to pitch business execs on IT projects, and why not to buy a dog from a pet store.

I’ve lived in London, Paris, and Sydney, but call L.A. home. #weatherwimp. I cultivate an organic vegetable garden and friends with issues. I’ve written three books, co-authored a fourth, and contributed to a bunch more. (I have another one in my head waiting to come out, but it’s crowded in there right now.) I prefer Def Leppard to Bon Jovi, mashed potatoes to brown rice, fly fishing to golf, Pinot Noir to Zinfandel, and nice people to assholes. I have a tattoo. I’m not telling you where. I feel guilty that I go hot and cold on social media, that I don’t spend enough face time with my friends, that my French is rusty, and that I ate that whole bag of Kirkland peanut butter cups in less than a week. I have to live with those things.

Wine, Women, and Data Science

Wine, Women, and Data Science

In which Jill enjoys wine, women, and data science. Wait. That came out wrong.

From a Bay Area perspective, it was nothing new. A clutch of hip tech types drifting through an innovation lab sipping merlot, downing sliders, and debating hyper-personalization and the connected car. What was different about the scene was that women made up roughly 95 percent of the crowd.

Co-sponsored by The Hive and Verizon Ventures (which provided the venue, featuring bird’s eye views of the Bay Bridge and the Ferry Building) the Women in Data Science meetup focused less on the term—after all, referring to data science as “sexy” has devolved into a Silicon Valley drinking game—and more on the data science toolbox.

The attendees were mostly millennials, and they were impressively savvy about the data science companies creeping into the valley like fog from the bay. Hummus and veggies and a chardonnay in tow, I listened in on conversations that spanned regression models, Git, identity masking, the pros and cons of Spark, chatbots, and the new Nvidia chip. These were heads-down, hard-working, and handy grrrlz. Indeed, many of them were self-taught programmers who’d stumbled into data science and intended to stay.

They were also hungry for industry buzz, networking opportunities, and career advice. Despite amplified attention on STEM careers and female-led startups, the only thing favoring women at most Bay Area tech events is the lack of restroom queues. The Hive and Verizon Ventures are two of a handful of firms making connections with and between women in tech, providing a forum for news, referrals, and future gatherings.

But when it comes to data science, women actually might have an edge. It turns out the “Best Job in America” is also one of the hardest to fill. Companies desperate to hire data scientists are less interested in their candidates’ career pedigrees and educational bona fides, instead of targeting the tricky mix of skill sets they need to wrangle, analyze, and provision their data. The novelty of the job title and the accompanying tools means that most candidates are on equal footing in the interview process.

And yet. A woman raised her hand during our panel Q&A. “I go back to work after putting my kids to bed,” she shared. “How do I stop feeling so guilty?”

“What a refreshing question from a woman,” I replied. “I usually get it from men!” We all laughed, and then laughed that we were laughing. Clearly, women in data science are not only bright, tech-savvy, and engaged—they have an appreciation for the absurd.

Editor's Note: Jill Dyché was named one of the 12 Inspiring Women in Data Science and Big Data by Information Week. Photo caption: Women in Data Science speakers - June Andrews of Pinterest, Jill Dyché of SAS, and Crystal Valentine of MapR. Original article on CIO.com.

Q&A with Jill Dyché: Does “Open” Mean “Free for the Taking?”

Q&A with Jill Dyché: Does “Open” Mean “Free for the Taking?”

Q&A with Jill Dyché: Shared Data Versus Public Data: Is There a Difference?

Q&A with Jill Dyché: Shared Data Versus Public Data: Is There a Difference?